New Developments in Mass Spectrometry-Based Metabolomics

The highly dynamic nature of metabolites and their abundances makes metabolomics a powerful endpoint of the ‘omics’ cascade, yielding a molecular profile that is closest to the physiological phenotype. Metabolomic profiles are therefore sensitive to subtle perturbations observed in early disease stages or disease progression, which may be difficult to detect at the proteome or transcriptome levels.

Type of Event:

Cooperation of Experiment and Theory in Enzyme Design

Scientists have exploited enzymes as catalysts for various chemical transformations for over 30 years. The benefits of using enzymes over other synthetic catalysts are numerous and include their specificity, selectivity, and stability. These strengths can also be weaknesses; enzymes are often only active for a few substrates, while synthetic catalysts can often be readily-tuned to increase substrate scope. The directed evolution of enzymes has been used to increase the substrate scope and/or change the selectivity of natural enzymes.

Type of Event:

Towards automation in oligosaccharide synthesis

Carbohydrates are the most abundant molecules among the four essential classes of biomolecules that also include nucleic acids, lipids, and proteins. Unlike proteins and nucleic acids, which follow template-driven synthetic pathways, there is no general route to the synthesis of carbohydrates. This literature seminar will focus on the commonly used methods to synthesize oligosaccharides and the gradual movement of the field towards automation.

Type of Event:

Synthesis and Bioimaging applications of Aggregation induced emission Nanoparticles

Aggregation induced emission (AIE) molecules are a type of compounds that emit weak fluorescence in diluted solution but emit strong fluorescence in aggregated state. Traditional organic fluorescent molecules tend to emit strong fluorescence in diluted solutions, but their fluorescence will be quenched in aggregated state, which are also known as aggregation-caused quenching (ACQ) effect. The effect is due to the excimer formed due to the π-π stacking between two molecules. AIE effect is first introduced by Dr.

Type of Event:

Incorporation of Benchtop NMR into Undergraduate Instructional Laboratories: Bringing Multi-Outcome Experiments to a New Level

In a multi-outcome experiment (MOE), there is at least one modifiable unknown component for students to identify. In the three projects in this talk, unknown starting material will the unknown component to identify. Student will utilize a series of modern analytical techniques to characterize the final product, including NMR spectroscopy, IR spectroscopy and melting point determination. This kind of multi-outcome experiments help bridge the gap between NMR theories taught in the lecture and practice with laboratory samples.

Type of Event: