Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

OXIDATIVE DEGRADATION AND REDUCTIVE REPAIR OF [4Fe-4S] CLUSTERS

Of the three most common Fe-S clusters found in nature, the [4Fe-4S] cluster is the most abundant and accounts for the most diverse functions, ranging from electron transfer to regulation of gene expression and radical generation1. Solvent accessible [4Fe-4S] clusters are very sensitive to oxidative degradation and as such, are sometimes used as sensors of oxidative stress2.

Type of Event:

Novel Cross-linkers and Pharmacological Chaperones Inspired by In Vivo Protein Modifications

This seminar will address three topics. 1: Protein PTMs that cause or contribute to neurodegenerative disease. 2: Protein PTMs that ameliorate neurodegenerative disease. 3: Cyclic thiosulfinate cross-linkers. These highly tunable S-cross-linkers avoid the toxic dead-end modifications created by previous cross-linkers, making safe in vivo cross-linking possible.

Type of Event:

Bio-Responsive Polyrotaxane-Based Nanochelators for Improving Transfusional Iron Chelation Therapy

Iron overload (IO) is one of the most common genetic diseases in the U.S. but individuals with the condition typically exhibit few symptoms in the early stages and are often unaware of their condition until it has already progressed to a dangerous level. Untreated, IO can induce cirrhosis and increase risk of liver cancer, cause arthritis, or lead to impotence.

Type of Event:

Illuminating the interaction between small molecules and cell membranes

The membranes of infectious fungi and bacteria have emerged as attractive antimicrobial targets due to the relatively rare occurrences of resistance for those drugs active against them. There exists, however, an incomplete understanding of the mechanisms of action for many such membrane-associated small molecule drugs. Using multiple nonlinear microscopy and spectroscopy techniques we are directly probing native small molecule drugs as they interact with the membranes of living bacterial and fungal cells.

Type of Event:

Transition Metal Catalyst Design and Application in the Synthesis of Cyclic Polymers

Cyclic polymers do not contain end groups, and as a result they demonstrate a number of unique physical properties. For example, the density, refractive index, Tg, viscoelasticity, reptation, and surface properties of cyclic polymers all differ from those of their more common linear analogs. Over the past fifty years a handful of catalysts have been discovered that can create cyclic polymers. In this seminar, four new catalysts will be presented that are capable of creating cyclic polymers.

Type of Event:

Ultrafast X-Ray Molecular Dynamics

Transient absorption in the extreme ultraviolet and x-ray spectral regimes is used to probe chemical dynamics on both the femtosecond and attosecond timescales. Laser-produced high-order harmonics in the soft x-ray can investigate dissociating molecules, ring opening, passage through conical intersections, singlet to triplet transitions, and electronic and vibrational coherences.

Type of Event:

Conversion-Type Electrodes and Ceramic Separators for Next Generation Li-Ion Batteries

Energy density and cost of Li-ion batteries (LIBs) based on conventional intercalation compounds are closely approaching their limits. The reliance of conventional cathodes on the use of toxic metals additionally endangers health and safety of miners in developing countries. Conversion-type active materials offer an opportunity to double energy stored in LIBs, reduce their cost by the same factor, and improve cell safety.

Type of Event:

Targeting kinases with constrained peptide scaffolds

Misregulation of kinases is implicated in a myriad of diseases and significant efforts have been put forth towards the development of targeted kinase inhibitors.  However, many issues remain with current therapeutic strategies including specificity and inhibitor resistance.  As an alternative approach for targeted inhibition, we have developed inhibitors targeting protein-protein interfaces (PPIs) that bind evolutionarily conserved structural features for a kinase of interest.  These peptide-based inhibitors are chemically constr

Type of Event:

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin