Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Tags: Physical Seminar

Gas phase nanoparticle formation is a highly complex process that transforms small molecules and radicals into solids that impact many aspects of our lives. These impacts may be positive (high value materials, commodity chemicals etc.) or negative (pollutants). Developing robust chemical mechanisms describing the formation of nanoparticles is critical to controlling the formation of desired species and the optimization of processes. Production…
High-level potential energy surfaces for three reactions of hypobromous acid with atomic hydrogen were computed at the CCSDTQ/CBS//CCSDT(Q)/complete basis set level of theory. Focal point analysis was utilized to extrapolate energies and gradients for energetics and optimizations, respectively. The H attack at Br and subsequent Br–O cleavage were found to proceed barrierlessly. The slightly submerged transition state lies −0.2 kcal mol−1…
Hydrocarbons of all shapes and sizes are found throughout the various stages of star- and planet formation. Recently, using radio astronomical observations, a variety of cyclic- and even polycyclic hydrocarbons have been detected in the very cold (10 K) Taurus molecular cloud. These detections challenge our understanding of the chemical formation mechanisms under these low-temperature and low-density conditions. In photon-dominated regions…
Ammonia (NH3) is important in the production of many products including fertilizers, plastics, resins, synthetic fabrics, and explosives. At the industrial scale, NH3 is produced using the Haber–Bosch (H–B) process, which is typically carried out at high temperatures and pressures. This process produces over 300 million metric tons of carbon dioxide each year, and consumes 1-2% of the world’s energy supply. Plasma catalysis is emerging as a…
Scanning Tunneling Microscopy (STM) has been a powerful method of imaging surfaces with very high spatial resolution. Another important use of STM is the study of molecular reaction pathways brought about by inelastic electron tunneling. In this process, tunneling electrons containing energy above a threshold bring about an excitation in the molecular system which leads to reaction pathways as the excited molecule consequently relaxes along its…

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin