Influence of the Side Chain Conformation on Glycosylation Selectivity in Furanosides Glycosylation reactions stereoselectivity depends on various factors and among them, side-chain configuration and conformation have been showing significant roles in influencing the reactivity and selectivity in bicyclic glycosyl donors. Moving to monocyclic donors, this effect has been revealed in glycosylation reactions of sialic acid donor series and simple pyranoside series. We studied the extension of this concept towards furanosides by synthesizing two suitably protected epimers of 5-methyl-D-xylose from D-xylose. Type of Event: Organic Seminar Read more about Influence of the Side Chain Conformation on Glycosylation Selectivity in Furanosides
Glycosylation Methods in the Total Synthesis of Complex Glycosylated Natural Products Carbohydrates are the most abundant class of molecules in the biosphere. Glycosylated secondary metabolites play a major role in carbohydrate chemistry expanding the scope of potential drug motifs. Glycosylated natural products are made out of sugars covalently O-, C-, N- or S- linked to the aglycone counterpart. In the course of synthesizing potential glycosidic therapeutics, effective and straightforward regio and stereoselective glycosylation methods are in high demand. Type of Event: Organic Seminar Read more about Glycosylation Methods in the Total Synthesis of Complex Glycosylated Natural Products
Alternatives to Per- and Polyfluoroalkyl Substances for Food Packaging Per- and Polyfluoroalkyl substances (PFAS’s) are widely used to coat paper and cardboard for food packaging because of their desirable grease, water, and heat resistant properties. Type of Event: Organic Seminar Read more about Alternatives to Per- and Polyfluoroalkyl Substances for Food Packaging
Aminoglycoside Antibiotic Derivatization and Glycosidase Transition State Stabilization through Substrate Side Chain Restriction The first half of the talk focuses on aminoglycoside antibiotics, highly active protein synthesis inhibitors that impact a wide range of both Gram positive and Gram negative bacteria. Though these drugs have many benefits and currently find use in the clinic, they can bring about reversible nephrotoxicity and irreversible ototoxicity. Type of Event: Organic Seminar Read more about Aminoglycoside Antibiotic Derivatization and Glycosidase Transition State Stabilization through Substrate Side Chain Restriction
Higher Order Cycloadditions Accomplished Using Transition Metal Catalysis Over the years, a common obstacle put in front of chemists has been the ability to construct molecules with medium sized ring structure in a high yielding and selective fashion. These higher order cyclic systems have a variety of problems synthetically with low levels of regioselective, chemoselectivity, stereoselectivity, and high levels of strain inside the scaffolds. There are very few examples of larger than six-membered rings easily synthesized using classic cycloaddition methods such as Diels-Alder and variants thereof. Type of Event: Organic Seminar Read more about Higher Order Cycloadditions Accomplished Using Transition Metal Catalysis
Organo Boronates, Phosphates, and Sulfates Synthesized by Fluoride Exchange Reaction and Their Applications in Vitrimer System Sulfur-fluoride exchange (SuFEx) reaction was first demonstrated by Sharpless and his co-workers1 in 2014. SuFEx is now considered as the second generation of click chemistry. It was established on the silicon centers, which can activate the exchange of S-F bonds for S-O bonds. A strong base, like triazabicyclodecene (TBD), was usually considered as the catalyst of SuFEx. Since then, we started to explore the possibility of the reaction between other heteroatom fluorides and silyl ethers. We found boron-fluoride (B-F) bonds are reactive as well. Type of Event: Organic Seminar Read more about Organo Boronates, Phosphates, and Sulfates Synthesized by Fluoride Exchange Reaction and Their Applications in Vitrimer System
Light-Induced Hydrogen Sulfide Release from o-Naphthoquinone Methide Precursors (NQMPs) Type of Event: Organic Seminar Read more about Light-Induced Hydrogen Sulfide Release from o-Naphthoquinone Methide Precursors (NQMPs)
Introduction to the Organic Seminar Type of Event: Organic Seminar Read more about Introduction to the Organic Seminar
Improving the Chemical Synthesis of Peptides and Proteins In 1963 solid-phase peptide synthesis (SPPS) was introduced by Merrifield. Since then, the chemical synthesis of short peptides became routine. However, synthesis of long peptides remains difficult, being time demanding and offering lower yields as the size of the desired chain increases. Likewise, the synthesis of small proteins was not possible until the development of Native Chemical Ligation (NCL), a technique for ligation of peptides to produce longer polypeptides/proteins. Type of Event: Analytical Seminar Read more about Improving the Chemical Synthesis of Peptides and Proteins
Overview of Reverse Transcription Real-Time Quantitative Polymerase Chain Reaction Polymerase Chain Reaction (PCR) is an in vitro enzymatic method used to amplify specific DNA sequences. The simple concept of PCR relies upon the repeated synthesis of targeted DNA using DNA polymerase enzyme. Conceived by Kary Mullis in 1983, PCR has now become a common and often indispensable technique that is used in clinical laboratory and medical laboratory research for a broad variety of applications including biomedical research and criminal forensics. Type of Event: Analytical Seminar Read more about Overview of Reverse Transcription Real-Time Quantitative Polymerase Chain Reaction