Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

How Metal Ions in the Brain Tip the Toxic Balance of the Killer Prion Protein

A prion is a misfolded form of the cellular prion protein, PrPC. Although the role of PrP in neurodegeneration was established over 30 years ago, there is little understanding of the protein’s normal function, and how misfolding leads to profound disease. Recent work shows that PrPC coordinates the cofactors Cu2+ and Zn2+, and regulates the distribution of these essential metal ions in the brain. Moreover, these metals stabilize a previously unseen fold in PrPC, the observation of which provides new insight into the mechanism of prion disease.

Destroying Toxic Amyloid-beta Aggregation with Photoactive Transition Metal Complexes

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, characterized by memory loss, motor skill loss, and eventually death that currently affects at least 5.8 million Americans.1 This number is projected to more than double in the next 30 years.1 Much effort has gone into determining the exact cause of onset of AD as well as developing strategies to mitigate its symptoms, however, there are currently are no substantial methods of prevention, slowing, or cure.1 For nearly 30 years, the prevailing hypothesis for AD c

Type of Event:

Unexpected oxygen tolerance in an efficient hydrogen-producing [FeFe] hydrogenase from Clostridium beijerinckii

[FeFe] hydrogenases catalyze reversible hydrogen evolution at rates as high as 10,000 turnovers per second. This exceptional catalytic ability is very attractive for the use of hydrogenases in renewable energy applications and biohydrogen production. Unfortunately, enzymes of this class are known to degrade irreversibly upon exposure to small  amounts of oxygen, presenting major roadblocks for study and implementation in practical or industrial applications.

Improving Selectivity and Catalytic Rate of Iron Porphyrin Catalysts for the Oxygen Reduction Reaction

The growing demand for sources of clean and sustainable fuel has been at the forefront of research since the turn of the 21st century. Development of hydrogen fuel cells utilizes hydrogen to meet these demands. Traditionally platinum, the most expensive component, is employed at the cathode of these cells to catalyze the oxygen reduction reaction (ORR). The drive for a cheaper alternative has led to the study of iron porphyrin complexes, inspired by cytochrome c oxidase (CcO), to catalyze ORR.

Type of Event:

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin