Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Bioanalytical Applications and Fundamental Studies Enabled by High-Resolution Cyclic Ion Mobility Separations Coupled to Mass Spectrometry

Ion mobility spectrometry-mass spectrometry has emerged as an orthogonal and complementary analytical technique to liquid chromatography-tandem mass spectrometry in omics-based analyses. Carbohydrate-containing molecules, such as human milk oligosaccharides and glycolipids, are notoriously difficult to characterize, largely owing to their high degrees of isomeric heterogeneity. Thus, new analytical methodologies are required to improve the confidence of their characterization.

Type of Event:

Trapped Ion Mobility-Assisted Sequencing and Analysis of Protein Ions

The sequencing of intact proteins within a mass spectrometer enables the profiling of post-translational modification (PTM) crosstalk but is frequently hindered by convoluted spectra and the fact that tandem mass spectrometry (MS/MS) techniques often generate poor sequence coverages when applied to protein ions. Ion mobility spectrometry is a promising tool to overcome the complexity of these spectra by separating ions by their mass- and size-to-charge ratios.

Type of Event:

Improving Separation of Stereochemical and Positional Isomers: A Combined HILIC-IM-MS Approach

The fundamental building blocks of life consist of lipids, carbohydrates, proteins, and nucleic acids which are assembled from small repeating monomer subunits. Specifically monosaccharides are the precursors of carbohydrates and amino acids are the building blocks of proteins. These two monomers are chiral (except glycine) and can exist in multiple stereochemical forms making their characterization complex. 

Type of Event:

Blending and Reactive Extrusion of Polyhydroxyalkanoates with Novel Aliphatic Polyesters

Polyhydroxyalkanoates, a class of biodegradable polyester made by fermentation, are explored via extrusion with various additives for the goal of improving mechanical properties. Two types of PHA are used, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with 6% hexanoate and 8% hexanoate, to understand how copolymer ratios affect properties. The two PHAs undergo blending and reactive extrusion with additives such as radical peroxide initiator, PLA, and other synthesized polyesters, and mechanical data is obtained through tensile testing.

Synthesis of Metal Pnictides and Exploration of Their Thermoelectric and Catalytic Potential

Synthesis of complex solids is often a bottleneck of the materials by design concept. The limitations of conventional synthetic approaches resulted in inability to synthesize predicted materials in ternary and quaternary systems with drastically different reactivities of the constituent elements. Several strategies to advance synthesis and produce challenging phases will be discussed, such as averaging precursor reactivity by atomic mixing of refractory components; and prebuilding chemical bonds in the precursor.

Leveraging High-Resolution Ion Mobility-Mass Spectrometry Approaches for Improving Analysis of Metabolites, Illicit Drugs, and Environmental Contaminants

Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful analytical technique in the biological -omics over the last two decades, due to advantages in speed and separation capabilities. Despite its now widespread utility, the resolving power of many commercial IM platforms (~40-60) is often insufficient for resolution of structurally similar compounds such as stereoisomers. This presents a critical need for us to develop higher resolution techniques to continue to push the boundaries of molecular discovery.

Type of Event:

Mass Spectrometry Technologies for Critical Analytical Challenges: from Small Molecules to Mega Dalton Complexes

Recent innovations in speed, accuracy and sensitivity have established mass spectrometry (MS) based methods as a key technology for the analysis of complex mixtures. MS techniques are emerging as the analytical gold standard for the identification and characterization of molecular components with wide applications in forensic, environmental, and biomedical research.  My research group focuses on the development of emerging technologies for characterization and structural elucidation.

Type of Event:

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin