Date & Time: Oct 31 2024 | 11:10am - 12:10pm Location: iSTEM Building 2, Room 1218 The development of catalytic complexity-building transformations is essential to efficient synthetic design.1 The capacity of a single catalyst to induce multiple bond-forming events can facilitate the rapid construction of molecules of interest. Due to the abundance of heterocycles in pharmaceutical agents and natural products, heterocyclizations coupled to additional processes can be advantageous toward the synthesis of medicinally relevant architectures.2 We and others have been investigating the use of platinum catalysis to generate α,β-unsaturated carbene intermediates via an intramolecular nucleophilic addition into alkynes bearing propargylic ethers. These carbenes have been demonstrated to undergo cycloadditions,3 hydrogen migrations,4 and vinylogous nucleophilic additions.5 Throughout our investigations, we have begun to develop a method to access the more recently studied bis-indole alkaloids6 through use of indole nucleophiles as a trapping agent. We have also developed a system by which allylsilanes7 can be used to access both nucleophile interception and cycloaddition products via catalyst control. As an extension of this, allenamides8 have proven to be competent in our carbene manifold to yield unique functionalizable tricyclic products. 1. Ardkhean, R.; Caputo, D. F. J.; Morrow, S. M.; Shi, H.; Xiong, Y.; Anderson, E. A. Chem. Soc. Rev. 2016, 45, 1557–1569. 2. Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644−4680. 3. (a) Saito, K.; Sogou, H.; Suga, T.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 689–691. (b) Shu, D.; Song, W.; Li, X.; Tang, W. Angew. Chem., Int. Ed. 2013, 52, 3237–3240. (c) Kusama, H.; Sogo, H.; Saito, K.; Suga, T.; Iwasawa, N. Synlett 2013, 24, 1364–1370. (d) Yang, W.; Wang, T.; Yu, Y.; Shi, S.; Zhang, T.; Hashmi, A. S. K. Adv. Synth. Catal. 2013, 355, 1523–1528. (e) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2017, 56, 605–609. (f) Huynh, K. Q.; Seizert, C. A.; Ozumerzifon, T. J.; Allegretti, P. A.; Ferreira, E. M. Org. Lett. 2017, 19, 294–297. 4. (e) Allegretti, P. A.; Ferreira, E. M. Org. Lett. 2011, 13, 5924−5927. (f) Allegretti, P. A.; Ferreira, E. M. Chem. Sci. 2013,4, 1053−1058. (g) Kwon, Y.; Kim, I.; Kim, S. Org. Lett. 2014,16, 4936−4939. 5. (a) Allegretti, P. A.; Ferreira, E. M. J. Am. Chem. Soc. 2013, 135, 17266–17269. (b) Shu, D.; Winston-McPherson, G. N.; Song, W.; Tang, W. Org. Lett. 2013, 15, 4162–4165. (c) Allegretti, P. A.; Huynh, K.; Ozumerzifon, T. J.; Ferreira, E. M. Org. Lett. 2016,18, 64–67. (d) Huynh, K. Q.; Seizert, C. A.; Ozumerzifon, T. J.; Allegretti, P. A.; Ferreira, E. M. Org. Lett. 2017, 19, 294–297. (e) Hu, Q.; Guo, C. Angew. Chem. Int. Ed. 2023, 62, e2023056. 6. Qian, X.-Q., et al. Bioorg. Chem. 2023130, 106201–106212. 7. Hosomi, A. Acc. Chem. Res. 1998, 21, 200–206; Knölker, H.-J., et al. Synlett. 2010, 2207–2239. 8. Hsung, R. P., et al. Chem. Rev. 2013, 113, 4862−4904. Type of Event: Organic Seminar Research Areas: Organic Chemistry Jacob Garber Department: Graduate Student, Department of Chemistry University of Georgia Learn more about the speaker https://chem.uga.edu/directory/people/jacob-garber