Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer


Competition between Solvent···Solvent and Solvent···Solute Interactions in the Microhydration of the Tetrafluoroborate Anion, BF4–(H2O)n=1,2,3,4

Portrait of Laura Olive, graduate student speaker
Laura Olive
Graduate Student, Department of Chemistry
University of Georgia
iSTEM Building 2, Room 1218
Physical Seminar

This study systematically examines the interactions of the tetrafluoroborate anion (BF4) with up to four water molecules (BF4(H2O)n=1,2,3,4). Full geometry optimizations and subsequent harmonic vibrational frequency computations are performed using a variety of density functional theory (DFT) methods (B3LYP, B3LYP-D3BJ, and M06-2X) and the MP2 ab initio method with a triple-ζ correlation consistent basis set augmented with diffuse functions on all non-hydrogen atoms (cc-pVTZ for H and aug-cc-pVTZ for B, O, and F; denoted as haTZ). Optimized structures and harmonic vibrational frequencies were also obtained with the CCSD(T) ab initio method and the haTZ basis set for the mono- and dihydrate (n = 1, 2) structures. The 2-body:Many-body (2b:Mb) technique, in which CCSD(T) computations capture the 1- and 2-body contributions to the interactions and MP2 computations recover all higher-order contributions, was used to extend these demanding computations to the tri- and tetrahydrate (n = 3, 4) systems. Four, five, and eight new stationary points have been identified for the di-, tri-, and tetrahydrate systems, respectively. The global minimum of the monohydrate adopts a symmetric double ionic hydrogen bond motif with C2v symmetry and an electronic dissociation energy of 13.17 kcal mol–1 at the CCSD(T)/haTZ level of theory. This strong solvent···solute interaction, however, competes with solute···solute interactions in the lowest-energy BF4(H2O)n=2,3,4 minima that are not seen in the other di-, tri-, or tetrahydrate minima. The latter interactions help increase the 2b:Mb dissociation energies to more than 26, 41, and 51 kcal mol–1 for n = 2, 3, and 4, respectively. Structures that form hydrogen bonds between the solvating water molecules also exhibit the largest shifts in the harmonic OH stretching frequencies for the waters of hydration. These shifts can exceed −280 cm–1 relative to an isolated H2O molecule at the 2b:Mb/haTZ level of theory.

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: 

Registration and credit

AP Credit, Section Changes, Overrides,

Graduate inquiries:

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email:

Head of Chemistry: Prof. Jason Locklin