Our group has recently demonstrated that macrocyclic 1,4-dketones can be converted into highly
strained arene-bridged systems, which represent (macrocyclic) benzenoid segments of armchair
carbon nanotubes (CNTs). This non-cross-coupling-based approach enables the incorporation of
strategically placed (aryl) halides that can later be engaged in programmed carbon-carbon bond
forming reactions, resulting in longitudinal pi-extension of benzenoid CNT segments to polycyclic
aromatic hydrocarbon (PAH) segments. The success of this approach is due to a
diastereoselective Grignard reaction, which is, in turn, dependent on the size of the macrocyclic
system(s) employed. Recent work that takes advantage of this size-dependent
diastereoselectivity and its application to the synthesis of functionalized bent arene units, highly
strained benzenoid macrocycles, and polyfunctionalized cyclobutanes will be discussed.
Bradley L. Merner
Auburn University
Chemistry Building, Room 400
Organic Seminar