Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Convergent Ab Initio Analysis of the Multi-Channel HOBr + H Reaction

Portrait of Ian Beck, speaker
Date & Time:
-
Location:
iSTEM Building 2, Room 1218
High-level potential energy surfaces for three reactions of hypobromous acid with atomic hydrogen were computed at the CCSDTQ/CBS//CCSDT(Q)/complete basis set level of theory. Focal point analysis was utilized to extrapolate energies and gradients for energetics and optimizations, respectively. The H attack at Br and subsequent Br–O cleavage were found to proceed barrierlessly. The slightly submerged transition state lies −0.2 kcal mol−1 lower in energy than the reactants and produces OH and HBr. The two other studied reaction paths are the radical substitution to produce H2O and Br with a 4.0 kcal mol−1 barrier and the abstraction at hydrogen to produce BrO and H2 with an 11.2 kcal mol−1 barrier. The final product energies lie −37.2, −67.9, and −7.3 kcal mol−1 lower in energy than reactants, HOBr + H, for the sets of products OH + HBr, H2O + Br, and H2 + BrO, respectively. Additive corrections computed for the final energetics, particularly the zero-point vibrational energies and spin–orbit corrections, significantly impacted the final stationary point energies, with corrections up to 6.2 kcal mol−1.

 
Type of Event:
Research Areas:
Ian Beck
Department:
Graduate Student, Department of Chemistry
University of Georgia

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin