Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Transition Metal Trichalcogenides for Electronics Applications

Yassamin Ghafouri
Yassamin Ghafouri
Graduate Student, Department of Chemistry
University of Georgia
ONLINE ONLY
Inorganic Seminar

Recently, transition metal trichalcogenides (MX3), a class of quasi-1D van der Waals materials, have revealed remarkable properties such as high current breakdown density and exceptional electromagnetic interference (EMI) shielding.1-3 Their unique properties are attributed to their pseudo-one-dimensional electronic structure with strong in-plane anisotropy and single crystalline structure. Therefore, to effectively integrate these materials into next generation nanoelectronics, it is necessary to optimize their synthesis to produce crystals of the desired composition, size, structure, and morphology. In this work, we present studies on the optimized bottom-up synthesis and characterization of TaSe3 nanowires, as well as its polarization-sensitive EMI shielding properties. Additionally, we utilized a top-down liquid phase exfoliation (LPE) technique to produce smaller dimension MX3 nanowires for in-situ electron microscopy studies. Our in-situ heating experiments provide valuable insight into the structural breakdown of NbS3 nanowires into NbS2 nanosheets under thermal stress. Finally, we demonstrated successful alloying of transition metal trichalcogenides materials which can be implemented as a method to tune the electronic properties of these low-dimensional materials. The synthesis of three types of alloys is enhanced to produce high quality nanowires and their structures are established using single crystal x-ray diffraction.

 

  1. Geremew, A., et al. "Current carrying capacity of quasi-1D ZrTe 3 van der Waals nanoribbons." IEEE Electron Device Letters 39.5 (2018): 735-738.
  2. Stolyarov, Maxim A., et al. "Breakdown current density in h-BN-capped quasi-1D TaSe 3 metallic nanowires: prospects of interconnect applications." Nanoscale 8.34 (2016): 15774-15782.
  3. Barani, Zahra, et al. "Electrically Insulating Flexible Films with Quasi1D van der Waals Fillers as Efficient Electromagnetic Shields in the GHz and SubTHz Frequency Bands." Advanced Materials 33.11 (2021): 2007286.

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin