Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Transitioning to eBooks: an Investigation of Student Satisfaction and Use of Worked Examples

Chemistry Building, Room 400
Analytical Seminar

The textbook is a multipurpose reference to find problem-solving algorithms or to gain conceptual understanding of the lecture content.1 The instructor-chosen textbook often drives the curriculum, especially for instructors with heavy teaching loads. Over the past 90 years, a traditional hard-copy text has been used to accompany the training of future chemists as the curriculum has evolved from purely descriptive chemistry to a “theory-first” presentation.2,3 However, an adaptation of the textbook to meet the current pedagogical revolution has been slow.4 Since its earliest proposal in 2000, more STEM instructors have embraced a “flipped” classroom model,5,6 in which formal class-time is used to provide active learning and problem solving with the instructor as a guide.7 Until recently, this flipped model has relied on traditional, hard-copy textbooks and instructor-generated videos to deliver the content traditionally found in lectures.5 Textbook publishers have responded to the recent demand for adaptive, data-driven learning technologies with complementary interactive delivery formats for traditional lecture material, such as electronic textbooks (eBooks).4,6,7 As the textbook becomes one of the main content-delivery tools, it becomes increasingly important to evaluate the function and value of a textbook and its features as the STEM community transitions to new teaching models and learning technologies.

This presentation has two main areas of inquiry: a survey on textbooks to function as a pilot/overarching theme and a mixed methods study involving eye-tracking to analyze the conceptual and algorithmic knowledge imbedded in worked example problems. Understanding the results of the textbook survey, as well as current research in the field, we can now optimize worked examples in eBooks so that they will not only be beneficial to students’ conceptual understanding of chemistry but will also motivate students to utilize the tools because they are modeled around the students’ learning preferences.

(1)       Pienta, N. J. In Investigating Classroom Myth through Research on Teaching and Learning; Bunce, D. M., Ed.; ACS: Washington, D.C., 2011, p 121.

(2)       Lloyd, B. W. J. Chem. Ed. 1992, 69, 633.

(3)       Bell, J. A. In Sputnik to Smartphones: A Half Century of Chemistry Education; Orna, M. V., Ed.; ACS: Washington, D.C., 2015, p 25.

(4)       Allen, G.; Guzman-Alvarez, A.; Smith, A.; Gamage, A.; Molinaro, M.; Larsen, D. S. Chem. Educ. Res. Pract. 2015, 16, 939.

(5)       Ryan, M. D.; Reid, S. A. J. Chem. Ed. 2016, 93, 13.

(6)       Salami, T. O.; Omiteru, E. O. In The Promise of Chemical Education: Addressing Our Students' Needs; Daus, K., Rigsby, R., Eds.; ACS: Washington, D.C., 2015, p 45.

(7)       Eubanks, I. D. In Sputnik to Smartphones: A Half Century of Chemistry Education; Orna, M. V., Ed.; ACS: Washington, D.C., 2015, p 339.

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: chemgrad@uga.edu

Contact Us!

Assistant to the Department Head: Donna Spotts, 706-542-1919 

Main office phone: 706-542-1919 

Main Email: chem-web@franklin.uga.edu

Head of Chemistry: Prof. Jason Locklin