Skip to main content
Skip to main menu

Slideshow

Photochemical reduction of redox enzymes for light-driven chemical reactions

Dr. Paul W. King
National Renewable Energy Laboratory (NREL) Golden, Colorado
Chemistry Building, Room 400
CMS Seminar

Photosynthesis powers living cells through the photogeneration of electron-hole pairs that drive energy-demanding chemical reactions. The principles that enable photosynthesis and biological energy conversion also provide a foundation for advancing the development of artificial, light-driven systems for catalytic production of chemical fuels. In order to effectively couple catalysts with light-harvesting requires understanding how molecular interfaces support electron transfer processes and the dynamics of the catalytic reaction. To advance understanding on this topic we have been investigating molecular complexes that integrate reduction-oxidation enzymes with light-harvesting materials to probe mechanisms coupling catalysis to photoexcited electron transfer. A combination of transient, and steady-state infrared and paramagnetic spectroscopy techniques are being used to gain insight on how photoexcited electrons couple to enzymes to drive multi-step reduction reactions. A summary of our research progress on these topics will be presented.

Support Us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.

Got More Questions?

Undergraduate inquiries: chemreg@uga.edu 

Registration and credit transferschemreg@uga.edu

AP Credit, Section Changes, Overrides, Prerequisiteschemreg@uga.edu

Graduate inquiries: tharrop@uga.edu

Contact Us!

Assistant to the Department Head: Kelli Porterfield, 706-542-1919 

Main office phone: 706-542-2626 

Fax: 706-542-9454

Head of the Department: Prof. Gary Douberly